MFS 4000SL HDD Mud System for Dewatering

Dewatering, otherwise known as water control or solids control, involves the process of draining rainwater or groundwater from an excavated area before construction begins. This process separates liquids from solid material such as drilling mud, dredged slurry, and more. Dewatering is typically carried out by pumping from wells to lower groundwater levels, allowing excavations to be made in stable and dry conditions.

In this blog, we will discuss common dewatering methods as well as the many benefits and applications of this process.


What Are the Dewatering Methods?

Water flow from tube after dewatering construction site.

There are several methods used to control water in an excavation project. Selecting a suitable dewatering method is crucial for the success of a construction project. Some common dewatering methods include:

Wellpoints 

This inexpensive, flexible, and easy to install dewatering method is effective under a range of soil and hydrological conditions. This method involves drilling wells around the construction area and installing submersible pumps in the well shaft. Pumps are then attached to a header pipe, enabling the groundwater to be drawn up into the wellpoints and then discharged.

Deepwells

Dewatering by deepwells is the ideal method when a large quantity of groundwater needs to be removed. This method involves drilling one or several individual wells and placing submersible pumps in each shaft to pump out groundwater. Deepwell dewatering systems have the potential to drain out water up to 24m in depth.


Benefits of Dewatering

Dewatering offers several benefits that guarantee a construction project is operating safely, on time, and within regulation. These benefits include:

  • Stable work area. Dewatering removes excess water from the work area to prevent hazards such as mudslides and equipment failure due to bogging and unstable foundations. Reducing these hazards guarantees a safe work environment for your crew.
  • Worker safety. Dewatering guarantees your crew is healthy and safe. Standing water can often become contaminated, which poses health risks for site managers, crews, and the surrounding community. Excess water also increases the risk of injuries due to slips and falls.
  • Keeping the project on schedule. Dewatering helps you to keep your project on schedule. Incorporating an efficient dewatering strategy ensures you quickly resolve unexpected adversities that could delay your projects, such as flooding from rain and unexpected storms. 
  • Protection of valuable equipment. Construction equipment is quite costly. Standing water can impact your equipment’s working conditions and lead to massive damages. Preventative dewatering systems keep your worksite equipment free from excess water.
  • Less impact on the surrounding environment. Standing water can cause massive damage to the environment, including erosion and contamination. Proper dewatering techniques allow construction sites to remove toxic water and prevent it from impacting the surrounding environment. 

Other advantages of dewatering include a smaller footprint on the worksite and the replacement of geotubes. This process can also provide water for injection wells, enables the reuse of water, and allows wastewater to be discharged to stormwater drains.


Dewatering Applications and Industries

Many applications and industries rely on effective dewatering techniques. For example, large wastewater treatment plants use dewatering to separate sludge into a liquid and solid. Other applications and industries that benefit from dewatering systems include: 

  • Construction
  • Wastewater treatment
  • Mining 
  • Environmental
  • Agriculture
  • Oil and energy
  • Pits from produced water
  • Flow-back water
  • Drilling muds
  • Open water drainage 
  • Emergency pumping
  • Hydrovac dewatering


Contact Triflo for Exceptional Dewatering Solutions

Many industries rely on dewatering systems to effectively separate liquids and solids, from construction and wastewater treatment to mining, agriculture, and more. This process is essential in ensuring safe working conditions, preventing contamination of the surrounding environment, and keeping your project on schedule. 

If you need high-quality dewatering solutions or solid separation products, turn to the experts at Triflo. With over 40 years of custom manufacturing and fabrication experience, we can deliver solids control and fluid management solutions to meet your fluid processing needs.

At Triflo, our team of experienced designers can develop the ideal dewatering solution for your requirements. We also offer a range of environmental dewatering systems, which use a three-stage liquid-solids separation process to separate solids from pumpable slurries or aqueous streams. To learn more about our dewatering equipment and engineered solutions, contact us or requested a quote today.

Comments are closed